CS 410
CS 410 - Text Information Systems
Fall 2024
Title | Rubric | Section | CRN | Type | Hours | Times | Days | Location | Instructor |
---|---|---|---|---|---|---|---|---|---|
Text Information Systems | CS410 | CSP | 79900 | PKG | 3 | 1400 - 1515 | F | ARR Illini Center | Pablo D Robles Granda |
Text Information Systems | CS410 | CSP | 79900 | PKG | 3 | - | Pablo D Robles Granda | ||
Text Information Systems | CS410 | DSO | 67393 | ONL | 4 | - | ChengXiang Zhai | ||
Text Information Systems | CS410 | MC3 | 79328 | PKG | 3 | - | Pablo D Robles Granda | ||
Text Information Systems | CS410 | MC3 | 79328 | PKG | 3 | 1400 - 1515 | F | ARR Illini Center | Pablo D Robles Granda |
Text Information Systems | CS410 | MC4 | 71013 | PKG | 4 | - | Pablo D Robles Granda | ||
Text Information Systems | CS410 | MC4 | 71013 | PKG | 4 | 1400 - 1515 | F | ARR Illini Center | Pablo D Robles Granda |
Text Information Systems | CS410 | TGR | 78821 | LEC | 3 | 0930 - 1045 | T R | 100 Gregory Hall | Pablo D Robles Granda |
Text Information Systems | CS410 | TUG | 78820 | LEC | 3 | 0930 - 1045 | T R | 100 Gregory Hall | Pablo D Robles Granda |
See full schedule from Course Explorer
Official Description
Theory, design, and implementation of text-based information systems. Text analysis, retrieval models (e.g., Boolean, vector space, probabilistic), text categorization, text filtering, clustering, retrieval system design and implementation, and applications to web information management. Course Information: 3 undergraduate hours. 3 or 4 graduate hours. Prerequisite: CS 225.
Course Director
Text(s)
ChengXiang Zhai and Sean Massung. 2016. Text Data Management and Analysis: a Practical Introduction to Information Retrieval and Text Mining. Association for Computing Machinery and Morgan & Claypool, New York, NY, USA. https://dl.acm.org/citation.cfm?id=2915031
Learning Goals
Be able to explain the basic concepts and principles of text information systems, such as push vs. push information access, probability ranking principle, and generative models. (1), (2), (6 )
Be able to explain how key algorithms for information retrieval, Web search, and text data mining work and compare them. (1), (2), (6 )
Topic List
Background & General Introduction
Information Retrieval Models
Evaluation
Web search
Recommender systems
Text data mining
Course Project
Assignments
Last updated
2/2/2019by ChengXiang Zhai